Analysis of Reaction Mechanisms in the New Millenium: Derivatives of the Potential Energy

Jane S. Murray,^{1,2} Soledad Gutiérrez-Oliva, ³ Alejandro Toro-Labbé, ³ Pablo Jaque⁴ and Peter Politzer^{1,2}

¹Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA.

²CleveTheoComp, 1951 W. 29th Street, Suite 409, Cleveland, OH 44113, USA.

³Laboratorio de QuímicaTeórica Computacional, Facultad de Química, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile.

⁴Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Avenida República 275, Santiago, Chile.

Abstract

The first and second derivatives of the potential energy along an intrinsic reaction coordinate ξ correspond physically to the negative of the (reaction) force, $\mathbf{F}(\xi)$, and the (reaction) force constant, $\kappa(\xi)$, respectively. The minima and maxima of $\mathbf{F}(\xi)$ divide the process into regions which are either structurally or electronically intensive. $\mathbf{F}(\xi)$ also divides the activation barrier into structural and electronic components, which helps to elucidate the effects of catalysts and solvents. $\kappa(\xi)$ characterizes the transition regions of reactions, and serves as an indicator of degrees of nonsynchronicity, as well as other specific features. Practical examples will be presented, e.g. in Diels-Alder reactions.